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Abstract. Belavin’s Zn-symmetric elliptic model with boundary reflection is considered on the
basis of the boundary CTM bootstrap. We find non-diagonal K-matrices for n > 2 that satisfy
the reflection equation (boundary Yang–Baxter equation), and also find non-diagonal Boltzmann
weights for the A

(1)
n−1-face model even for n � 2. We derive difference equations of the quantum

Knizhnik–Zamolodchikov type for correlation functions of the boundary model. The boundary
spontaneous polarization is obtained by solving the simplest difference equations in the case of the
free boundary condition. The resulting quantity is the square of the spontaneous polarization for
the bulk Zn-symmetric model, up to a phase factor.

1. Introduction

Integrable models with a boundary have been studied in massive quantum theories [1–7] and
half-infinite lattice models [8–15]. The boundary interaction is specified by the boundary S-
matrix for massive quantum theories [3], by the reflection matrixK for lattice vertex models [8],
and by the boundary weights V ’s for the lattice face model [11]. The integrability in the
presence of a reflecting boundary is ensured by the reflection equation (boundary Yang–Baxter
equation) [1, 11], in addition to the Yang–Baxter equation for bulk (i.e. without boundary)
theory [16].

It was shown in [3] that the boundary vacuum of boundary integrable theories can be
expressed in terms of the vacuum and the creation operators in the bulk theory. In [9] the
explicit bosonic formulae of the boundary vacuum of the boundary XXZ model were obtained
by using the bosonization of the vertex operators associated with the bulk XXZ model [17].

The quantum Knizhnik–Zamolodchikov equations [18,19] are satisfied by both correlation
functions and form factors for bulk field theories [20] and for bulk lattice models [21,22] with
the affine quantum group symmetry. It is shown in [10] that correlation functions and form
factors in semi-infinite XXZ/XYZ spin chains with integrable boundary conditions satisfy the
boundary analogue of the quantum Knizhnik–Zamolodchikov equation [1, 2].

In this paper we study Belavin’s Zn-symmetric vertex model [23] with integrable boundary
condition, the boundary Belavin model. The R-matrix of Belavin’s model is expressed in
terms of elliptic functions of the spectral parameter z so that the R-matrix has doubly quasi-
periodicity. Thus we expect that the K-matrix of the boundary Belavin model also possesses
appropriate transformation properties with respect to z compatible with those of the R-matrix.
We shall show that under such an assumption the K-matrix of the boundary Belavin model is

0305-4470/00/468275+29$30.00 © 2000 IOP Publishing Ltd 8275



8276 Y-H Quano

inevitably non-diagonal for n > 2. Our solution is diagonal for n = 2 but different from the
one used in [10].

On the basis of boundary CTM bootstrap [10,16,21] we find that the correlation functions
for the boundary Belavin model satisfy a set of difference equations, the boundary analogue
of the quantum Knizhnik–Zamolodchikov equation. Furthermore, by solving the simplest
difference equations, we obtain the boundary spontaneous polarization for the free boundary
condition† which turns out to be the square of that for the bulk Zn-symmetric model [24].

The rest of this paper is organized as follows. In section 2 we review Belavin’s Zn-
symmetric model, thereby fixing our notations. In section 3 we give two non-diagonal solutions
to the reflection equation, one is a constant K-matrix, and the other is an elliptic K-matrix.
Furthermore, we consider the boundary analogue of the vertex–face correspondence to discuss
the connection between our K-matrix and the boundary weights of the A

(1)
n−1 model [25]. In

section 4 we construct the lattice realization of the boundary vacuum states and vertex operators
from the boundary CTM bootstrap approach. In section 5 we derive difference equations for
N -point functions of the boundary Belavin model. We solve the simplest difference equations
with N = 1 for free boundary condition to obtain the explicit expression of the boundary
spontaneous polarization. The result gives the higher-rank generalization of that for the
boundary eight-vertex model [10]. In section 6 we summarize the results obtained in this
paper, and give some concluding remarks.

2. Belavin’s vertex model

2.1. Elliptic theta functions

For a complex number τ in the upper half-plane, let τ := Z + Zτ be the lattice generated by
1 and τ , and Eτ := C/τ the complex torus which can be identified with an elliptic curve.
For a, b ∈ R, introduce the Jacobi theta function

ϑ

[
a

b

]
(z, τ ) :=

∑
m∈Z

exp
{
π

√−1(m + a) [(m + a)τ + 2(z + b)]
}
. (2.1)

Hereafter a positive integer n � 2 is fixed and we will use the following compact symbols

σ (n)
α (z) = ϑ

[
α2/n + 1/2
α1/n + 1/2

]
(z, τ )

θ(j)
n (z) = ϑ

[
1/2 − j/n

1/2

]
(z, nτ)

(2.2)

for α = (α1, α2) ∈ Z
2 and for j ∈ Zn, and

h(z) :=
n−1∏
j=0

θ(j)(z) /
n−1∏
j=1

θ(j)(0).

The superscript (n) and the subscript n will be often suppressed when we have no fear of
confusion.

The elliptic theta functions are expressed in terms of the product series

θ(j)(z) = √−1ωj/2tn(1/2−j/n)2
u−1+2j/n(t2n; t2n)∞(t2ju2; t2n)∞(t2(n−j)u−2; t2n)∞

h(z) = t (n−1)/4 (t
2n; t2n)3

∞
(t2; t2)3∞

σ0(z, τ ) = √−1tn/4 (t
2n; t2n)3

∞
(t2; t2)2∞

u−1(u2; t2)∞(t2u−2; t2)∞
(2.3)

† The free boundary condition implies that the K-matrix is a scalar matrix.
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where ω = exp(2π
√−1/n) and

(a; q1, · · · , qk)∞ :=
∞∏

m1=0

· · ·
∞∏

mk=0

(1 − aq
m1
1 · · · qmk

k ).

2.2. Belavin’s vertex model

Let V = C
n and {vi}i∈Zn

be the standard orthonormal basis of V with the inner product
(vj , vk) = δjk . Let Vz be a copy of V with a spectral parameter z. The Zn-symmetric model
is a vertex model on a two-dimensional square lattice L such that the state variables take on
values of Zn-spin. Each oriented line of L carries a spectral parameter varying from line to
line. We assign a Zn-valued local state on each edge. Let

R(z1 − z2)
ik
j l := ✲✻j

k

l

i
z1

z2

be a local Boltzmann weight for a single vertex with bond states i, j, k, l ∈ Zn. Arrows denote
orientations of lines. We now define the linear map on Vz1 ⊗Vz2 called the R-matrix as follows:

RVz1 ,Vz2 (vj ⊗ vl) =
∑
i,k∈Zn

(vi ⊗ vk)R(z1 − z2)
ik
j l .

Belavin [23] considered the Zn-symmetric model satisfying

(i) R(z)ikj l = 0 unless i + k = j + l, mod n

(ii) R(z)
i+pk+p
j+pl+p = R(z)ikj l for every i, j, k, l and p ∈ Zn.

(2.4)

In terms of a two-linear map in V

gvi = ωivi hvi = vi−1 (2.5)

where ω = exp(2π
√−1/n), the conditions (2.4) can be rephrased as follows:

R(z)(g ⊗ g) = (g ⊗ g)R(z)

R(z)(h ⊗ h) = (h ⊗ h)R(z).
(2.6)

Thus the R-matrix of Belavin’s Zn-symmetric model is of the form

R(z) = 1

κ(z)
R(z)

R(z) =
∑
α∈Gn

uα(z)Iα ⊗ I−1
α .

(2.7)

Here Gn = Zn × Zn, and Iα = gα1hα2 for α = (α1, α2). The normalization factor κ(z) will
be given later. The coefficient function uα(z) is determined by imposing the condition that
the R-matrix satisfies the Yang–Baxter equation

R12(z1 − z2)R13(z1 − z3)R23(z2 − z3) = R23(z2 − z3)R13(z1 − z3)R12(z1 − z2) (2.8)

where Rij (z) denotes the matrix on V ⊗3, which acts as R(z) on the i-th and j -th components
and as identity on the other one. Belavin’s solution to (2.8) is given as follows:

uα(z) = u(n)
α (z, w) := 1

n

σα(z + w/n)

σα(w/n)
(2.9)
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where w(�= 0 mod τ) is a constant. It is obvious that the following initial condition holds:

R(0) = P P(x ⊗ y) = y ⊗ x. (2.10)

In order to facilitate the derivation of similar results for the K-matrix of the boundary
Zn-symmetric model, we give brief sketches of proofs of several well known properties for
Belavin’s R-matrix.

Proposition 2.1. The Boltzmann weights or the elements of the R-matrix are given as [26]

R(z)ikj l =


h(z)θ(i−k)(z + w)

θ(j−k)(z)θ(i−j)(w)
if i + k = j + l, mod n

0 otherwise.
(2.11)

Proof. Because of the Zn-symmetry,

R
i−jk−j

0l−j (z) = Rik
jl (z) =

∑
α∈Gn

uα(z)(Iα)
i
j (I

−1
α )kl

= δi+kj+l

∑
α1∈Zn

u(α1,j−i)(z)ω
(i−l)α1 .

Set Rab(z) = Rab
0a+b(z). Then we have

Rab(z) = Rab
n (z, w) =

∑
α1∈Zn

u
(n)

(α1,−a)(z, w)ω−bα1 . (2.12)

The transformation property of Rab(z) and the initial condition Rab(0) = δb0 imply that

Rab(z) = 0 at z = cτ (c �= −b, mod n) and z = (a − b)τ − w, mod nτ . (2.13)

Hence Rab(z) has the form

Rab(z) = Cab(w)θ(a−b)(z + w)
∏
c �=−b

θ (c)(z).

By substituting z = −bτ we have

Cab(w)−1 = θ(a)(w)
∏
c �=0

θ(c)(0)

which concludes that (2.11) holds. �
As a corollary of proposition 2.1, we have [26]

PR(−w) = −R(−w)

R(w)P = R(w).
(2.14)

Now we assume that 0 < t < q < u < 1, where t := exp(π
√−1τ), q := exp(π

√−1w),
and u := exp(−π

√−1z). Following Baxter [16] we call such a domain of parameters the
principal regime. Note that (2.11) gives the weights of the eight-vertex model when n = 2.

2.3. Unitarity and crossing symmetry

Belavin’s R-matrix satisfies the unitarity and crossing symmetry relations [26–28].

Proposition 2.2. Belavin’s R-matrix satisfies the following unitarity relation or the first
inversion relation:

R21(z)R12(−z) = ρ1(z, w)I ⊗ I (2.15)

where

ρ1(z, w) = σ(z + w)σ(−z + w)

σ 2(w)
. (2.16)
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Proof. Note that

R21(z)R12(−z) =
∑
α∈Gn

u(n)
α (z, w)I−1

α ⊗ Iα
∑
β∈Gn

u
(n)

β (−z,w)Iβ ⊗ I−1
β

=
∑

αβ∈Gn

u(n)
α (z)u

(n)

β (−z)I−1
α Iβ ⊗ IαI

−1
β

=
∑
a∈Gn

f (n)
a (z, w)Ia ⊗ I−1

a

where

f (n)
a (z, w) =

∑
α∈Gn

ω〈α,a〉u(n)
α (z, w)u(n)

a+α(−z,w) (2.17)

and 〈α,a〉 = α1a2 − α2a1. Proposition 2.2 is thus reduced to

f (n)
a (z, w) = ρ1(z, w)δa0. (2.18)

Concerning the proof of (2.18), see theorem 3.3 and lemma 3.2 in [28]. �
Next we describe the crossing symmetry for Belavin’s Zn-symmetric model. For that

purpose let us recall theR-matrix onK⊗L, whereK = Vz1 ⊗· · ·⊗Vzk andL = Vz′
1
⊗· · ·⊗Vz′

l
:

RK,Vz′ := R
Vz1 ,Vz′
1;k+1 · · ·RVzk

,Vz′
k;k+1

RK,L := R
K,Vz′

l

1···k;k+l · · ·R
K,Vz′1
1···k;k+1.

The Yang–Baxter equation (2.8) holds for RK,L by virtue of the Yang–Baxter equation for
RV,V

R
K,L
12 R

K,M
13 R

L,M
23 = R

L,M
23 R

K,M
13 R

K,L
12 (2.19)

as a linear map on K ⊗ L ⊗ M .
For special Kk

z = Vz1 ⊗ · · · ⊗Vzk such that zj = z + (k + 1 − j)w (1 � j � k), the fusion
operator π associated with Kk

z is given as follows [29]:

π := R
Vz1 ,Vz2
k−1;k R

Vz1 ⊗Vz2 ,Vz3
k−2,k−1;k · · ·RVz1 ⊗···⊗Vzk−1 ,Vzk

1,···,k−1;k . (2.20)

From the first equation of (2.14) and the Yang–Baxter equation (2.8) we have

π(Kk
z ) = k(V ) = Anti(Kk

z ). (2.21)

Let V ∗ be the dual space of V and {v∗
i }i∈Zn

be the dual basis of {vi}i∈Zn
. Then we have

the isomorphism C : V ∗
z+nw/2 −→ Anti(Kn−1

z )

Cv∗
i =

∑
i1,···,in−1

ε
i1···in−1
i√
(n − 1)!

vi1 ⊗ · · · ⊗ vin−1 (2.22)

where ε
i1···in−1
i is the n-th order completely antisymmetric tensor. The spectral parameter

z+nw/2 associated with the dual spaceV ∗ refers to the mean value of n−1 spectral parameters
z + (n − 1)w, · · ·, z + w of V †. Then the R-matrices on V ⊗ V ∗ and V ∗ ⊗ V are defined as
follows:

R
Vz1 ,V

∗
z2+nw/2 = (I ⊗ C)−1RVz1 ,Vz2+(n−1)w⊗···⊗Vz2+w (I ⊗ C)

R
V ∗
z1+nw/2,Vz2 = (C ⊗ I )−1RVz1+(n−1)w⊗···⊗Vz1+w,Vz2 (C ⊗ I ).

(2.23)

The un-normalized R on V ⊗ V ∗ and V ∗ ⊗ V are also defined in a similar manner.

† Note that the spectral parameter of V ∗ is shifted by nw/2 from the one in [24, 28].
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Proposition 2.3. The R-matrix on V ⊗ V ∗ and V ∗ ⊗ V defined in (2.23) meet the crossing
symmetry [27, 28]:

R
Vz2 ,V

∗
z1+nw/2

21 = (R
Vz1 ,Vz2
12 )t1

n−1∏
p=2

h(−z1 + z2 + pw)

h(w)

R
V ∗
z1+nw/2,Vz2

12 = (R
Vz2 ,Vz1+nw

21 )t1
n−2∏
p=1

h(−z1 + z2 − pw)

h(w)

(2.24)

where ti denotes the transposition of the i-th space.

Proof. Let

R
Vz2 ,V

∗
z1+nw/2

21 (vj ⊗ v∗
l ) =

∑
i,k

(vi ⊗ v∗
k ) a

ik
j l (−z1 + z2)

Because of the initial condition (2.10) and the second equation of (2.14), the element aik
jl (−z)

vanishes at −z = pw, where p = 2, · · · , n − 1. Thus we have an entire function bikjl (−z)

from aik
jl (−z) divided by h(−z − 2w) · · · f (−z − (n − 1)w).

The transformation properties of bikjl (−z) are the same as for R
li

kj (z). It follows from the
second equation of (2.14) that bikjl (−z) = 0 at z = cτ for c �= j − k and at z = (i − k)τ − w,

which coincides with the zeros of R
li

kj (z) (2.13). Thus bikjl (−z) equals Řkl
ij (z) up to a scalar

factor, which is determined by substituting z = (k − i)τ . The second equation of (2.24) can
be shown in a similar way. �

From (2.16) and (2.24), we have the following second inversion relation [26, 28]∑
j l

R
t1

12(z)R
t1

21(−z − nw) = ρ2(z, w)I (2.25)

where

ρ2(z, w) = h(−z)h(z + nw)

h2(w)
. (2.26)

Imposing the unitarity and crossing symmetry condition with respect to the normalized
R-matrix:

R21(z)R12(−z) = I ⊗ I (2.27)

R
Vz2 ,V

∗
z1+nw/2

21 = (R
Vz1 ,Vz2
12 )t1 R

V ∗
z1+nw/2,Vz2

12 = (R
Vz2 ,Vz1+nw

21 )t1 , (2.28)

the normalization factor κ(z) should obey the following functional equations:

κ(z)κ(−z) = ρ1(z, w)

κ(z)κ(−z − nw) = ρ2(z, w).
(2.29)

Hereafter κ(z) is often denoted by κ(u) through the relation u = exp(−π
√−1z). In the

principal regime using (2.3) the following expression solves (2.29) [26]:

κ(u) = u−(n−2)/n (u
2; t2)∞(t2u−2; t2)∞

(q2; t2)∞(t2q−2; t2)∞
κ̄(u) (2.30)

where

κ̄(u) = (q2u2; t2, q2n)∞(q2nu−2; t2, q2n)∞(t2q−2u2; t2, q2n)∞(t2q2nu−2; t2, q2n)∞
(q2+2nu−2; t2, q2n)∞(u2; t2, q2n)∞(t2q−2+2nu−2; t2, q2n)∞(t2u2; t2, q2n)∞

.

From κ(1) = 1 the initial condition for R also holds:

R(0) = P. (2.31)
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3. Boundary Belavin model

3.1. Reflection equation for the boundary Belavin model

In this section we consider the following reflection equation or the boundary Yang–Baxter
equation [1]:

K2(z2)R21(z1 + z2)K1(z1)R12(z1 − z2) = R21(z1 − z2)K1(z1)R12(z1 + z2)K2(z2). (3.1)

The reflection equation (3.1) is valid when z1 = z2 because R(0) = P . Furthermore, the
following lemma holds:

Lemma 3.1. The reflection equation (3.1) is valid when (1) z1 = 0; (2) z1 = −z2 provided

(1) Boundary initial condition: K(0) = I

(2) Boundary unitarity relation: K(z)K(−z) = I
(3.2)

respectively.

Proof. It is evident from the unitarity (2.27) and the initial condition (2.31) for R-matrix. �
Here we notice that Belavin’s R-matrix has the following quasi-periodic properties:

R(z + 1) = −(g ⊗ I )−1R(z)(g ⊗ I )

= −(I ⊗ g)R(z)(I ⊗ g)−1

R(z + τ) = −(h ⊗ I )−1R(z)(h ⊗ I ) exp
{
−2π

√−1
(
z +

τ

2
+
w

n

)}
= −(I ⊗ h)R(z)(I ⊗ h)−1 exp

{
−2π

√−1
(
z +

τ

2
+
w

n

)}
.

(3.3)

Thus we have the following proposition:

Proposition 3.2. Let

K(z) = 1

λ(z)
K(z)

whereλ(z) is a scalar function. Suppose (3.2) and the following quasi-transformation property:

K(z + 1) = −gK(z)g

K(z + τ) = −hK(z)h exp
{
−2π

√−1
(
z +

τ

2
+ c
)} (3.4)

where c is a constant. Then K(z) solves (3.1).

Proof. Let F(z1, z2) stand for the difference of the LHS and the RHS of (3.1). Then we have

F(z1 + 1, z2) = −(g ⊗ I )F (z1, z2)(g ⊗ I )

F (z1 + τ, z2) = −(h ⊗ I )F (z1, z2)(h ⊗ I ) exp(−2π
√−1B)

(3.5)

where B = 3z1 + 3τ/2 + 2w/n + c. The second equation of (3.5) implies that the (ik, j l)-th
element of F(z1, z2) satisfies

F(z1 + τ, z2)
ik
j l = −F(z1 + τ, z2)

i+1k
j−1l(−2π

√−1B). (3.6)

Thus we find that F(pτ, z2)
ik
j l ∝ F(0, z2)

i+pk
j−pl = 0 for 0 � p � n − 1 from lemma 3.1.

Similarly, we have F(z2 + pτ, z2)
ik
j l = F(−z2 + pτ, z2)

ik
j l = 0 for 0 � p � n − 1:

F(pτ, z2)
ik
j l = F(z2 + pτ, z2)

ik
j l

= F(−z2 + pτ, z2)
ik
j l = 0 (0 � p � n − 1). (3.7)
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Assume thatF(z1, z2)
ik
j l is not identically zero. From the Richey–Tracy lemma (see section

3 in [26] or lemma 2.4 in [28]) we conclude that F(z1, z2)
ik
j l has 3n zeros in Enτ whose sum

is equal to nc − 2w − 3n(n − 1)τ − (i + j)τ . The contradiction to (3.7) implies the claim of
this proposition. �

3.2. Solutions of the reflection equation

Under the assumption of the quasi-periodicity (3.4) compatible to (3.3) we find that K(z) is
not a diagonal matrix for n > 2. When n = 2 we can take K(z) diagonal because of g−1 = g

and h−1 = h. The most general and non-diagonal solution for n = 2 is given in [30,31]. Other
non-diagonal solutions for the D(2)

n -vertex model are given in [32].
In this paper we consider the following two solutions of (3.1), which can also be found

in [33].

3.2.1. Constant K-matrix

Proposition 3.3. Let

K0vj = vn−j (3.8)

where vn = v0. Then K0 solves (3.1).

Proof. It is easy to see that gK0g = hK0h = K0. Hence we have

K2(z2)R21(z1 + z2)K1(z1)R12(z1 − z2)

= I ⊗ K0

∑
α

uα(z1 + z2)(I
−1
α ⊗ Iα)(K0 ⊗ I )

∑
β

uβ(z1 − z2)(Iβ ⊗ I−1
β )

= K0 ⊗ K0

∑
α

ωα1α2uα(z1 + z2)Iα ⊗ Iα
∑
β

ωβ1β2uβ(z1 − z2)Iβ ⊗ I−β

= K0 ⊗ K0

∑
β

ωβ1β2uβ(z1 − z2)Iβ ⊗ I−β

∑
α

ωα1α2uα(z1 + z2)Iα ⊗ Iα

=
∑
β

ωβ1β2uβ(z1 − z2)(I−β ⊗ Iβ)(K0 ⊗ I )

×
∑
α

ωα1α2uα(z1 + z2)(Iα ⊗ I−α)(I ⊗ K0)

= R21(z1 − z2)K1(z1)R12(z1 + z2)K2(z2)

which implies this proposition. �

3.2.2. Elliptic K-matrix Let

m =
{

n if n is odd
n/2 if n is even

and let

K(z) =
∑

α∈Gm

ω2α1α2u
(n)
2α(z, v)I2α

=
∑

α∈Gm

u
(n)
2α(z, v)Jα (3.9)
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where

Jα = hα2g2α1hα2

for α = (α1, α2), and v(�= 0 mod τ) is a constant. Using the identity

1

m

m−1∑
α1=0

ω2α1(i−α2) =
{

δα2,i if n is odd
δα2,i + δα2,i−m if n is even

we have K(0) = K0.

Lemma 3.4. The following quasi-transformation property holds:

K(z + 1) = −g−1K(z)g

K(z + τ) = −h−1K(z)h exp
{
−2π

√−1
(
z +

τ

2
+

v

m

)}
.

(3.10)

Proof. This is based on the transformation properties of the elliptic theta function. �

Lemma 3.5. Let K(z) = K0K(z). Then the boundary inversion relation holds:

K(z)K(−z) = ρ1(z, v)I. (3.11)

Proof. Direct calculation shows

K(z)K(−z) = K0

∑
α∈Gm

u
(n)
2α(z, v)JαK0

∑
β∈Gm

u
(n)

2β(−z, v)Jβ

=
∑

α∈Gm

u
(n)
2α(z, v)J−α

∑
β∈Gm

u
(n)

2β(−z, v)Jβ

=
∑

α∈Gm

∑
β∈Gm

ω2〈α,β〉u(n)
2α(z, v)u

(n)

2β(−z, v)Jα−β

=
∑

a∈Gm

g(n)
a (z, v)Ia

where

g(n)
a (z, v) =

∑
α∈Gm

ω2〈α,a〉u(n)
2α(z, v)u

(n)

2(a+α)(−z, v). (3.12)

By comparing g
(n)
a (z, v) with f

(n)
a (z, w) defined in (2.17), we easily have g

(n)
a (z, v) =

f
(m)
a (z, v) and hence (3.11) holds for even n. Repeating a similar argument as in proposition

2.2, we can also obtain (3.11) for odd n. �

Theorem 3.6. Let K(z) = K0K(z). Then K(z) solves the reflection equation (3.1).

Proof. From lemma 3.4 we find that K(z) satisfies (3.4) with c = v/m. Since K(0) = K0
2 =

I , the K(z) also satisfies the first equation of (3.2). It follows from lemma 3.5 that K(z)

satisfies the second equation of (3.2). Thus K(z) is a solution to the reflection equation (3.1)
from proposition 3.2. �

Remark. Our K-matrix for n = 2 is different from the one used in [10] so readers should be
careful to compare our results with those of n = 2.
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3.3. Matrix elements of the K-matrix

In this subsection we calculate the (j, k)-th element of K(z):

K(z)vk =
∑
j∈Zn

vjK(z)
j

k .

Note that

K(z)
j

k = K(z)
n−j

k =
∑
α2∈Zm

δ
2α2
j+k

∑
α1∈Zm

u
(n)

(2α1,j+k)(z, v)ω
−(j−k)α1 .

When n is even, thanks to the sum over α2, K(z)
j

k = 0 if j + k is odd. By comparing (2.12)
we obtain

K(z)
j

k =
{

R− j+k
2 ,

j−k

2
m (z, v) if j + k is even

0 if j + k is odd
(3.13)

for even n, and

K(z)
j

k =
 R−j−k,

j−k

2
n (z, v) if j − k is even

R−j−k,
j−k+n

2
n (z, v) if j − k is odd

(3.14)

for odd n.
We are now in a position to determine the normalization factor λ(z). The boundary

inversion relation (3.11) implies

λ(z)λ(−z) = ρ1(z, v). (3.15)

Furthermore, the boundary crossing symmetry holds for n = 2 [3, 8–10]:

K(z)
j

k =
∑
j ′,k′

R(−2z − w)
j ′ 1−k′
1−j k K(−z − w)k

′
j ′ (3.16)

which implies that

λ(−z − w)

λ(z)
= 1

κ̄(u2)

(q2u−2; t2)∞(t2q−2u2; t2)∞
(u2; t2)∞(t2u−2; t2)∞

. (3.17)

Since V ∗ ∼= n−1(V ) �∼=V for n > 2, the LHS of (3.16) for higher n should be replaced by the
(j, k)-th element of the dual K-matrix. We wish to discuss this point again in section 4.

Here we assume the following functional relation holds for n � 2:

λ(−z − n
2w)

λ(z)
= 1

κ̄(u2)

(qnu−2; t2)∞(t2q−nu2; t2)∞
(u2; t2)∞(t2u−2; t2)∞

. (3.18)

It is not (3.18) but (3.15) that is important for calculating the spontaneous polarization in
section 5, so we proceed further under the assumption (3.18). By solving (3.15) and (3.18) we
obtain

λ(z) = 1

(r2; t2)∞(t2r−2; t2)∞

(r2u2; t2, q2n)∞(t2r−2u2; t2, q2n)∞
(r2q2nu−2; t2, q2n)∞(t2r−2q2nu−2; t2, q2n)∞

φ(u2)

φ(u−2)
(3.19)

where r = exp(−π
√−1v), and

φ(x) = (qnx; t2, q2n)∞(t2qnx; t2, q2n)∞
(q2nx; t2, q2n)∞(t2x; t2, q2n)∞(r2qnx; t2, q2n)∞(t2r−2qnx; t2, q2n)∞

× (q2n+2x2; t2, q4n)∞(t2q2n−2x2; t2, q4n)∞
(q2nx2; t2, q4n)∞(t2q2nx2; t2, q4n)∞

.
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3.4. Comments on boundary weights for the boundary A
(1)
n−1-face model

In this subsection we wish to discuss the boundary analogue of the vertex–face correspondence.
Concerning the case n = 2, see [15, 35]. Let us consider the bulk A

(1)
n−1-face model whose

local state takes on values of P , the weight lattice of A(1)
n−1 [34]. An ordered pair (a, b) ∈ P 2

is called admissible if b = a + ĵ , for a certain j ∈ Zn, where

ĵ = vj − 1

n

n−1∑
k=0

vk.

Let

W

(
a b

d c

∣∣∣∣ z1 − z2

)
= ✲z1

✻
z2

a b

cd

be the local Boltzmann weight for a state configuration (a, b, c, d) around a face. Then

W

(
a b

d c

∣∣∣∣ z) = 0 unless all four pairs (a, b), (a, d), (b, c) and (d, c) are admissible.

Non-zero Boltzmann weights are given as follows:

W

(
a b

d c

∣∣∣∣ z) = 1

w(z,w)
W

(
a b

d c

∣∣∣∣ z) (3.20)

where w(z,w) is a scalar function and

W

(
a a + ĵ

a + ĵ a + 2ĵ

∣∣∣∣∣ z
)

= h(z + w)

h(w)

W

(
a a + ĵ

a + ĵ a + ĵ + k̂

∣∣∣∣∣ z
)

= h(ajkw − z)

h(ajkw)
(j �= k)

W

(
a a + k̂

a + ĵ a + ĵ + k̂

∣∣∣∣∣ z
)

= h(z)

h(w)

h(ajkw + w)

h(ajkw)
(j �= k).

(3.21)

Here

ajk = āj − āk āj = (a + ρ, vj )

and ρ =
n−1∑
j=0

(n − 1 − j)ĵ is the half-sum of the positive roots.

Jimbo et al [34] introduced intertwining vectors to show the equivalence between the
Zn-symmetric model and the A

(1)
n−1 model. Let

tab (z) := t(t
a(0)
b (z), · · · , ta(n−1)

b (z))

t
a(i)
b (z) :=

{
θ(i)(z + δ − nwāj ) if b = a + ĵ

0 otherwise

(3.22)

where δ is an arbitrary constant. Then we have the so-called vertex–face correspondence [34]:

R(z1 − z2)t
a
d (z1) ⊗ tdc (z2) =

∑
b

W

(
a b

d c

∣∣∣∣ z1 − z2

)
tbc (z1) ⊗ tab (z2). (3.23)
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Thanks to (3.23), the Boltzmann weights (3.21) solve the face-type Yang–Baxter equation [34]:∑
g

W

(
b c

g d

∣∣∣∣ z1 − z2

)
W

(
a b

f g

∣∣∣∣ z1 − z3

)
W

(
f g

e d

∣∣∣∣ z2 − z3

)
=
∑
g

W

(
a b

g c

∣∣∣∣ z2 − z3

)
W

(
g c

e d

∣∣∣∣ z1 − z3

)
W

(
a g

f e

∣∣∣∣ z1 − z2

)
.

(3.24)

Let us now consider the boundary A
(1)
n−1-face model. By analogy with the bulk case, we

find the following proposition:

Proposition 3.7. Assume the existence of boundary weights V ’s satisfying

K(z)tac (z) =
∑
b

V

(
a

b

c

∣∣∣∣ z) tab (−z). (3.25)

Then V solves the face-type reflection equation [11]∑
b,e

V

(
f

g

e

∣∣∣∣ z2

)
W

(
a f

b e

∣∣∣∣ z1 + z2

)
V

(
b

e

c

∣∣∣∣ z1

)
W

(
a b

d c

∣∣∣∣ z1 − z2

)
=
∑
b,e

W

(
a f

b g

∣∣∣∣ z1 − z2

)
V

(
b

g

e

∣∣∣∣ z1

)
W

(
a b

d e

∣∣∣∣ z1 + z2

)
×V

(
d

e

c

∣∣∣∣ z2

)
. (3.26)

In order to solve (3.25), let us recall the dual intertwining vectors [27, 28, 36]

t∗ba (z) := (t∗ba(0)(z), · · · , t∗ba(n−1)(z))

t
∗a+ĵ
a(i) (z) := (Ãa(z))ij / det Aa(z).

(3.27)

Here Aa(z) is a matrix whose (i, j)-component is t
a(i)

a+ĵ
(z), and Ãa(z) is a cofactor matrix of

Aa(z). Note that tab (z) is a column vector while t∗ba (z) is a row vector. Thus by the rule of
multiplication of matrices, t∗ba (z)tcd (z

′) represents a scalar function while tab (z)t
∗c
d (z′) represents

a function-valued matrix. Since tab (z) and t∗ba (z) enjoy the following orthogonal properties

t∗a+ĵ
a (z)ta

a+k̂
(z) = δjk (3.28)

n−1∑
j=0

ta
a+ĵ

(z)t∗a+ĵ
a (z) = In (3.29)

the boundary analogue of the vertex–face correspondence (3.25) is equivalent to

V

(
a

b

c

∣∣∣∣ z) = t∗ba (−z)K(z)tac (z)

=
∑
j,k

t∗ba(j)(−z)K(z)
j

k t
a(k)
c (z). (3.30)

Proposition 3.8. Let

V

(
a

b

c

∣∣∣∣ z) = 1

λ(z)
V

(
a

b

c

∣∣∣∣ z)
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where λ(z) is the same scalar function as for K(z), and V is defined by (3.30). Then the
boundary weights V ’s satisfy the initial condition

V

(
a

b

c

∣∣∣∣ 0

)
= δbc (3.31)

and the inversion relation∑
g

V

(
a

b

g

∣∣∣∣ z)V

(
a

g

c

∣∣∣∣− z

)
= δbc . (3.32)

Proof. The initial condition (3.31) follows from that for K(z) and (3.28). The inversion
relation (3.32) follows from (3.29), (3.11) and (3.28). �

The boundary weights V

(
a

b

c

∣∣∣∣ z) are non-diagonal in the sense that they do not vanish

even for b �= c as a function of z. Hence (3.30) does not coincide with the diagonal solution of
(3.26) involving the bulk Boltzmann weights for the A

(1)
n−1-face model given in [25] for n � 2.

Such disagreement indicates that there may exist an unknown solution to (3.1) corresponding
to the solution given in [25] and also an unknown solution to (3.26) corresponding to our
K-matrix, throughout the boundary vertex–face correspondence.

3.5. Commuting transfer matrix

The transfer matrix with L columns,

TL(z1, z2) := ��
❅❅❘ ✲��

❅❅�
✛ ✻ ✻ ✻ ✻

� �

z1

−z1

z2 z2 z2 z2

VL VL−1 V2 V1· · · · · ·

is expressed in terms of R- and K-matrices as follows [8]:

TL(z1, z2) = Tr0 K+(z1)T (z1, z2)

T (z1, z2) = T (−z1 − z2)
−1K−(z1)T (z1 − z2).

(3.33)

Here

T (z1 − z2) = R
Vz1 ,Vz2
01 · · ·RVz1 ,Vz2

0L ∈ End (V0 ⊗ V1 ⊗ · · · ⊗ VL)

T (−z1 − z2)
−1 = R

Vz2 ,V−z1
L0 · · ·RVz2 ,V−z1

10 ∈ End (V0 ⊗ V1 ⊗ · · · ⊗ VL)

are monodromy matrices satisfying

R12(z1 − z2)T1(z1)T2(z2) = T2(z2)T1(z1)R12(z1 − z2) (3.34)

and Tr0 signifies the trace on the auxiliary space associated with the spectral parameters z1

and −z1. Note that the boundary monodromy matrix T (z, z′) is a solution to the reflection
equation:

T2(z
′
1, z2)R21(z1 + z2)T1(z1, z

′
1)R12(z1 − z′

1) = R21(z
′
1 − z1)T1(z1, z2)R12(z1 + z′

1)T2(z
′
1, z2).

(3.35)
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Proposition 3.9. If one takes

K−(z) = K(z, v) K+(z) = K(−z − n
2w, v′) ∈ End (V0) (3.36)

where v and v′ are arbitrary parameters, the transfer matrices (3.33) commute with each
other [8]:

[TL(z1, z2), TL(z
′
1, z2)] = 0. (3.37)

Proof. From the crossing symmetry (2.28) and the unitarity (2.27) we have

TL(z1, z2)TL(z
′
1, z2)

= Tr1K1(−z1 − n
2w)T1(z1, z2)Tr2K2(−z′

1 − n
2w)T2(z

′
1, z2)

= Tr1Tr2K2(−z′
1 − n

2w)K
t1
1 (−z1 − n

2w)T t1
1 (z1, z2)T2(z

′
1, z2)

= Tr1Tr2K2(−z′
1 − n

2w)K
t1
1 (−z1 − n

2w)R
t1
21(−z1 − z′

1 − nw)R
t1
12(z1 + z′

1)

×T t1
1 (z1, z2)T2(z

′
1, z2)

= Tr1Tr2K2(−z′
1 − n

2w)(R21(−z1 − z′
1 − nw)K1(−z1 − n

2w))t1

×(T1(z1, z2)R12(z1 + z′
1))

t1T2(z
′
1, z2)

= Tr1Tr2K2(−z′
1 − n

2w)R21(−z1 − z′
1 − nw)K1(−z1 − n

2w)R12(z
′
1 − z1)

×R21(z1 − z′
1)T1(z1, z2)R12(z1 + z′

1)T2(z
′
1, z2)

where we use TrAB = TrAtBt . Furthermore, from (3.35) we have

= Tr1Tr2R21(z
′
1 − z1)K1(−z1 − n

2w)R12(−z1 − z′
1 − nw)K2(−z′

1 − n
2w)

×T2(z
′
1, z2)R21(z1 + z′

1)T1(z1, z2)R12(z1 − z′
1)

= Tr1Tr2K1(−z1 − n
2w)(K2(−z′

1 − n
2w)R12(−z1 − z′

1 − nw))t2

×(R21(z1 + z′
1)T2(z

′
1, z2))

t2T1(z1, z2)

= Tr1Tr2K1(−z1 − n
2w)(R12(−z1 − z′

1 − nw)K2(−z′
1 − n

2w))t2

×(T2(z
′
1, z2)R21(z1 + z′

1))
t2T1(z1, z2)

= Tr1Tr2K1(−z1 − n
2w)K

t2
2 (−z′

1 − n
2w)T t2

2 (z′
1, z2)T1(z1, z2)

= TL(z
′
1, z2)TL(z1, z2)

which implies the commutativity (3.37). �

4. Boundary CTM bootstrap

In this section we construct a lattice realization of vertex operators and the boundary vacuum
states for the boundary Belavin model.

4.1. Partition function

Let us consider the inhomogeneous lattice LLM with 2M horizontal lines carrying alternating
spectral parameters z1 and −z1 and L(≡ 0 mod n) vertical lines carrying the spectral parameter
z2 as below:
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�
�
❅

❅❘ ✲�
�
❅

❅�
✛

�
�
❅

❅❘ ✲�
�
❅

❅�
✛

✻ ✻ ✻ ✻

�

�

�

�

z1

−z1

z1

−z1

...

z2 z2 z2 z2

· · · · · ·

i
i

i

i

i
i

i−
i−

i−

i−

i−

i−

i−
i−

i−−

i−−

i

i

i

i

i

i

i+

i+

i+

i+

i+

i+

i+

i+

i++

i++

�
�

��
❅

❅❅

�
��
❅

❅
❅❅

...

...

This diagram shows the lattice LLM and the i-th ground state. The arrows indicate the
orientation of the spectral parameters. The dots (•) indicate the boundary interaction K(z).
For the sake of simplicity, we here denote the states i±1 and i±2 by i± and i±±, respectively.
A zigzag line on which the state variables take i + 1 is presented for transparency.

In this paper we restrict ourselves to the principal regime 0 < t < q < r < u± < 1, where
u± = exp

(−π
√−1(z1 ± z2)

)
. In this regime of parameters, the bulk Boltzmann weights of

the typeR(z)
j+1,j
j,j+1 dominate the others; and the boundary Boltzmann weightKi

i (z) is the largest

among K
j

i (z) for fixed i. Thus in the low-temperature limit t, q → 0, only the configuration
such that the spin variables take the same value along the zigzag line (see the above figure) and
increase by one in the direction from left to right, is possible. We call it a configuration of the
ground state labelled by the boundary state i ∈ Zn. Actually, the boundary weights K0

0 (z), and
Km

m(z) if n is even, are the largest among the Ki
i (z). We therefore have only one real ground

state for odd n and two for even n. Nevertheless, we regard all n kinds of configurations as
the ground states.

In what follows, we fix one of them (say, i) and define all the correlation functions in terms
of the low-temperature series expansion (i.e. the formal power series of t and q). Then the
lowest order of them comes from the i-th ground state configuration. Furthermore, any finite-
order contribution is derived from the configurations which differ from that of the i-th ground
state by altering a finite number of spins. It is equivalent to taking the GNS representation
obtained from the i-th ground state (i-th GNS representation) as the Hilbert space. It is expected
that the correlation function defined in such a way is an analytic function which has a finite
convergence radius if there exists the phase transition at a finite temperature.

Following [10] we conjecture that the partition functionZ
(i)
LM(z1, z2) of this model behaves

in the thermodynamic limit L,M → ∞ as

logZ
(i)
LM(z1, z2) ∼ LM

(
logµ(i)(z1 − z2) + logµ(i)(z1 + z2)

)
+M

(
log ν(i)(z1) + log ν(i)(−z1 − n

2w)
)
. (4.1)
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Here µ(i)(z) is the partition function per site for the bulk theory, and ν(i)(z) is that per boundary
site, which are normalized as follows:

µ(i)(z) = 1 ν(0)(z) = 1 ν(m)(z) = 1 if n is even. (4.2)

Next we consider the inhomogeneous boundary CTM lattice, shown here as split into four
sections:

✲��
❅❅�

✛

✲��
❅❅�

✛

✲��
❅❅�

✛

✲��
❅❅�

✛

✻

✻

✻

✻

�

�

�

�

z1

−z1

z1

−z1

z1

−z1

z1

−z1

z2

z2

z2

z2

i〈B|

|B〉i

A
(i)
SW(z1, z2)

A
(i)
NW(z1, z2)

We denote the SW and NW corner transfer matrices by A
(i)
SW(z1, z2) and A

(i)
NW(z1, z2),

respectively; and also denote the upper and lower lines of K(z) by i〈B| and |B〉i , respectively.
Let H(i) and H̄(i) be the C-vector spaces spanned by the half-infinite pure tensor vectors of the
forms
· · · ⊗ vp(3) ⊗ vp(2) ⊗ vp(1) with p(j) ∈ Zn, p(j) = i + 1 − j (mod n) for j � 1

· · · ⊗ vp(3) ⊗ vp(2) ⊗ vp(1) with p(j) ∈ Zn, p(j) = i (mod n) for j � 1
(4.3)

respectively; and let H∗(i) and H̄∗(i) be their dual spaces. Then in the infinite lattice limit we
conclude that |B〉i ∈ H̄(i), i〈B| ∈ H̄∗(i), and

A
(i)
SW(z1, z2) : H̄(i) −→ H(i)

A
(i)
NW(z1, z2) : H(i) −→ H̄∗(i).

(4.4)

The partition function is given as follows:

Z(i)(z1, z2) = i〈B|A(i)
NW(z1, z2)A

(i)
SW(z1, z2)|B〉i . (4.5)
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4.2. Vertex operators

Let us introduce the type I vertex operators

✲✻ ✻ ✻
z1

j

z2 z2 z2

· · · = φ
j

(i−1,i)(z1 − z2) : H(i) −→ H(i−1)

✛ ✻ ✻ ✻
z1

j

z2 z2 z2

· · · = φ
(i+1,i)
j (z2 − z1) : H(i) −→ H(i+1)

✲✻ ✻ ✻
z1

j ∗

z2 z2 z2

· · · = φ
∗j
(i+1,i)(z1 − z2) : H(i) −→ H(i+1)

✛ ✻ ✻ ✻
z1

j ∗

z2 z2 z2

· · · = φ
∗(i−1,i)
j (z2 − z1) : H(i) −→ H(i−1)

where the sub/superscripts (i ± 1, i) specify the spaces intertwined by the vertex operators.
We often suppress these sub/superscripts when we have no fear of confusion.

It follows from the Yang–Baxter equation that these vertex operators satisfy the following
commutation relations [10, 17]:

φj2(z2)φ
j1(z1) =

∑
j ′

1,j
′
2

(RVz1 ,Vz2 )
j1j2

j ′
1j

′
2
φj ′

1(z1)φ
j ′

2(z2)

φ∗j2(z2)φ
j1(z1) =

∑
j ′

1,j
′
2

(R
Vz1 ,V

∗
z2 )

j1j2

j ′
1j

′
2
φj ′

1(z1)φ
∗j ′

2(z2)

φ∗j2(z2)φ
∗j1(z1) =

∑
j ′

1,j
′
2

(R
V ∗
z1
,V ∗

z2 )
j1j2

j ′
1j

′
2
φ∗j ′

1(z1)φ
∗j ′

2(z2).

(4.6)

Furthermore, the unitarity relations for theR-matrices imply the inversion relation of the vertex
operators: ∑

j

φj (−z)φj (z) = 1
∑
j

φ∗
j (−z)φ∗j (z) = 1. (4.7)

From the crossing symmetry we have

φ∗j (z) = φj (−z − n
2w) φ∗

j (−z) = φj (z − n
2w). (4.8)

Using these vertex operators, the transfer matrix for the semi-infinite lattice is defined as
follows:

TB(z1, z2) =
∑
j,k

φj (z1 + z2)K
j

k (z1)φ
k(z1 − z2)

=
∑
j,k

φ∗j (−z1 − n
2w − z2)K

j

k (z1)φ
k(z1 − z2). (4.9)
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If the i-th vacuum states |vac〉i and i〈vac| satisfy the following reflection properties:∑
k

K
j

k (z)φ
k(z)|vac〉i = ν(i)(z)φj (−z)|vac〉i

i〈vac|
∑
k

φk(z)K
k
j (z) = ν(i)(z)i〈vac|φj (−z)

(4.10)

then these vacuums are the eigenstates of TB(z, 0) associated with the eigenvalues ν(i)(z),
respectively:

TB(z, 0)|vac〉i = ν(i)(z)|vac〉i i〈vac|TB(z, 0) = ν(i)(z)i〈vac|.
For n = 2, it suffices to consider only two types of vertex operators φj (z) and φj (z)

because of φ∗j (z) = φ1−j (−z − w) and φ∗
j (z) = φ1−j (−z − w) [10]. Furthermore, from

TB(z1, z2) = TB(−z1 − w, z2) for n = 2, we have∑
j,k

φ1−j (−z1 − w − z2)K
j

k (z1)φ
k(z1 − z2)

=
∑
j ′,k′

φ1−k′
(z1 − z2)K

k′
j ′ (−z1 − w)φj ′

(−z1 − w − z2)

=
∑
j,k

j ′ ,k′

R(−2z1 − w)
j ′ 1−k′
1−j k φ1−j (−z1 − w − z2)φ

k(z1 − z2)K
j ′
k′ (−z1 − w) (4.11)

which implies the boundary crossing symmetry (3.16).
The crucial point in (4.11) consists of the self-duality φ∗

j (z) = φ1−j (z) for n = 2. Thus
the boundary crossing symmetry (3.16) does not have a simple generalization for n > 2. We
should rather regard the RHS of (3.16) for general n as the definition of the dual K-matrix. In
order to see that, let us repeat the reduction (4.11) for general n. Using equations (4.8), (4.10),
(4.6) and (4.7) we have

ν(i)(z) =
∑
j ′,k′

i〈vac|φ∗k′
(−z − n

2w)Kk′
j ′ (z)φ

j ′
(z)|vac〉i

=
∑
j,k

j ′ ,k′

i〈vac|φj (z)(RVz,V
∗
−z−nw/2)

j ′k′
jk Kk′

j ′ (z)φ
∗k(−z − n

2w)|vac〉i

=
∑
j,k

j ′ ,k′

i〈vac|φ∗
j (−z − n

2w)(RVz,V
∗
−z−nw/2)

j ′k′
jk Kk′

j ′ (z)φ
∗k(−z − n

2w)|vac〉i .

Thus, if we define the dual K-matrix by

K∗(−z − n
2w)

j

k :=
∑
j ′,k′

(RVz,V
∗
−z−nw/2)

j ′k′
jk K(z)k

′
j ′ (4.12)

then the following dual reflection properties hold:∑
k

K∗(z)jkφ
∗k(z)|vac〉i = ν(i)(−z − n

2w)φ∗j (−z)|vac〉i

i〈vac|
∑
k

φ∗
k (z)K

∗(z)kj = ν(i)(−z − n
2w)i〈vac|φ∗

j (−z).
(4.13)

The associativity condition of the algebra (4.6) and (4.13) implies the reflection equations
involving K∗-matrices:

K2(z2)R
Vz2 ,V

∗
−z1

21 K∗
1 (z1)R

V ∗
z1
,Vz2

12 = R
V−z2 ,V

∗
−z1

21 K∗
1 (z1)R

V ∗
z1
,V−z2

12 K2(z2)

K∗
2 (z2)R

V ∗
z2
,V ∗

−z1
21 K∗

1 (z1)R
V ∗
z1
,V ∗

z2
12 = R

V ∗
−z2

,V ∗
−z1

21 K∗
1 (z1)R

V ∗
z1
,V ∗

−z2
12 K∗

2 (z2).
(4.14)
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4.3. Derivation of the reflection properties

In this subsection we derive the reflection properties (4.10) and (4.13). For that purpose we
introduce the following further two types of vertex operators:

✻

✛

✲

✛

✲

...

j

−z1

z1

−z1

z1

z3

= ϕ
j

(i−1,i)(z1, z3) : H̄(i) −→ H̄(i−1)

and
✻

✛

✲

✛

✲

...

j

−z1

z1

−z1

z1

z3

= ϕ
(i−1,i)
j (z1, z3) : H̄(∗i) −→ H̄(∗i−1).

where the sub/superscripts (i ± 1, i) specify the spaces intertwined by the vertex operators.
Hereafter we also suppress these sub/superscripts.

From the reflection equation (3.1)

✻✛

✲

✛

✲
...

k−z1

z1

−z1

z1

z3

❅❅�

��

❅❅�

��

�

�

|B〉i
❍❍❍

✟✟✟

j−z3

�

=
✻

✻✛

✲

✛

✲
...

k2

k1

−z1

z1

−z1

z1

z3

❅❅�

��

❅❅�

��

�

�

|B〉i

❍❍❍

✟✟✟

j

−z3

� = · · · = ν(i)(z3) ×

✻✛

✲

✛

✲
...
...

−z1

z1

−z1

z1

−z3

❅❅�

��

❅❅�

��

�

�

|B〉i
j
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we have the following relation:∑
k

K(z3)
j

kϕ
k(z1, z3)|B〉i = ν(i)(z3)ϕ

j (z1,−z3)|B〉i . (4.15)

By a similar argument we have∑
k

i〈B|ϕk(z1,−z3)K(z3)
k
j = ν(i)(z3)i〈B|ϕj (z1, z3). (4.16)

Furthermore, we have the relations

A
(i−1)
SW (z1, z2)ϕ

j (z1, z3)|B〉i = φj (z3 − z2)A
(i)
SW(z1, z2)|B〉i (4.17)

i〈B|ϕj (z1, z3)A
(i−1)
NW (z1, z2) = i〈B|A(i)

NW(z1, z2)φj (z2 − z3). (4.18)

These are based on the unitarity and the Yang–Baxter relation of the R-matrix in the
thermodynamic limit. The unitarity (2.28) allows us to obtain

✲��
❅❅�

✛

✲��
❅❅�

✛

✻✻✻✻

�

�

z1

−z1

z1

−z1

z2z2z2z2 |B〉i
✻

z3

j

=

✲��
❅❅�

✛

✲��
❅❅�

✛

✻✻✻✻

�

�

z1

−z1

z1

−z1

z2z2z2z2 |B〉i
✻

z3

j

Using the Yang–Baxter equation (2.8) we obtain

✲��
❅❅�

✛

✲��
❅❅�

✛

✻✻✻✻

�

�

z1

−z1

z1

−z1

z2z2z2z2 |B〉i
✻

z3

j

=

✲��
❅❅�

✛

✲��
❅❅�

✛

✻✻✻✻

�

�

z1

−z1

z1

−z1

z2z2z2z2 |B〉i
✻

z3

j

...

...✻

· · ·✛
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By successive use of the Yang–Baxter equation and the unitarity we can bring the line associated
with the spectral parameter z3 to the directions indicated by dotted lines in the above figure as
far as we like. Thus we find

✲��
❅❅�

✛

✲��
❅❅�

✛

✻✻✻✻

�

�

z1

−z1

z1

−z1

z2z2z2z2 |B〉i
✻

z3

j

=

✲��
❅❅�

✛

✲��
❅❅�

✛

✻✻✻✻

�

�

z1

−z1

z1

−z1

z2z2z2z2 |B〉i

� � � � ��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

✲

z3

j

These manipulations imply (4.17) because the contribution of Boltzmann weights along the
tail graphically represented in the figure by the dotted line is unity in the thermodynamic limit.
The relation (4.18) can be similarly obtained.

Applying A
(i−1)
SW (z1, z2) (resp. A

(i−1)
NW (z1, z2)) from the left (resp. right) to both sides of

(4.15) (resp. (4.16)) and using (4.17) (resp. (4.18)) we obtain∑
k

K(z3)
j

kφ
k(z3 − z2)A

(i)
SW(z1, z2)|B〉i = ν(i)(z3)φ

j (−z3 − z2)A
(i)
SW(z1, z2)|B〉i (4.19)∑

k

i〈B|A(i)
NW(z1, z2)φk(z2 + z3)K(z3)

k
j = ν(i)(z3)i〈B|A(i)

NW(z1, z2)φj (z2 − z3). (4.20)

Taking account of (4.19) and (4.20) with (4.10) we find the following identification

|vac〉i = A
(i)
SW(z1, z2 = 0)|B〉i i〈vac| = i〈B|A(i)

NW(z1, z2 = 0). (4.21)

From the identification (4.21) and the definition of the dual K-matrix (4.12) we obtain∑
k

K∗(z3)
j

kφ
∗k(z3 − z2)A

(i)
SW(z1, z2)|B〉i

= ν(i)(−z3 − n
2w)φ∗j (−z3 − z2)A

(i)
SW(z1, z2)|B〉i (4.22)∑

k

i〈B|A(i)
NW(z1, z2)φ

∗
k (z2 + z3)K

∗(z3)
k
j

= ν(i)(−z3 − n
2w)i〈B|A(i)

NW(z1, z2)φ
∗
j (z2 − z3). (4.23)

5. Correlation functions and difference equations

The relations appearing in the previous section are not rigorous because all the objects are
defined on the infinite lattice. Nevertheless we assume that equations (4.1)–(4.23) are exactly
correct on the basis of the CTM bootstrap method, which is supported by some numerical
calculations [16] and consistency with the vertex operator method [17].
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5.1. Local state probabilities

Let us consider the correlation function on the dislocated CTM lattice:

G
(i)
N (z, z′|z′

1, · · · , z′
N, zN, · · · , z1)

j ′
1,···j ′

N ,jN ,···,j1

=

✲��
❅❅�

✛

✲��
❅❅�

✛

✲��
❅❅�

✛

✲��
❅❅�

✛

✻

✻

✻

✻

�

�

�

�

z

−z

z

−z

z

−z

z

−z

z′

z′

z′

z′

i〈B|

|B〉i

✻

✻

zN

z′
N

jN

j ′
N

· · ·
· · ·

✻

✻

z1

z′
1

j1

j ′
1

Thanks to (4.17) and (4.18) we have

G
(i)
N (z, z′|z′

1, · · · , z′
N, zN, · · · , z1)

j ′
1,···,j ′

N ,jN ,···,j1

= i〈B|A(i)
NW(z, z′)φj ′

1
(z′ − z′

1) · · ·φj ′
N
(z′ − z′

N)

×φjN (zN − z′) · · ·φj1(z1 − z′)A(i)
SW(z, z′)|B〉i . (5.1)

Thus the correlation functionG
(i)
N (z, z′|z′

1, · · · , z′
N, zN, · · · , z1)

j ′
1,···,j ′

N ,jN ,···,j1 normalized by the
partition function (4.5) is called the N -point local state probability of the boundary Belavin
model if we set zl = z′

l = z′ = 0, jl = j ′
l (1 � l � N ). Owing to the unitarity (4.7) we have

Z(i)(z1, z2) =
∑

j1,···jN
G

(i)
N (z, z′|z1, · · · , zN , zN, · · · , z1)

j1,···,jN ,jN ,···,j1 . (5.2)

Thus we obtain the expression of the n-point local state probability:

P
(i)
N (j1, · · · , jN) = G

(i)
N (z, 0|0, · · · , 0)j1,···,jN ,jN ,···,j1∑

j1,···jN
G

(i)
N (z, 0|0, · · · , 0)j1,···,jN ,jN ,···,j1

. (5.3)
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5.2. Boundary analogue of the quantum Knizhnik–Zamolodchikov equation

Only for n = 2, the N -point function (5.1) is reduced to the following 2N -point function of
the form

F
(i)
2N(z, z

′|y1, · · · , yN, zN, · · · , z1)
j ′

1,···,j ′
N ,jN ,···,j1

= i〈B|A(i)
NW(z, z′)φk1(y1 − z′) · · ·φkN (yN − z′)

×φjN (zN − z′) · · ·φj1(z1 − z′)A(i)
SW(z, z′)|B〉i (5.4)

by putting yl = z′
l − w and kl = 1 − j ′

l for 1 � l � N [10].
This is nothing to do with any local state probabilities for n > 2; however, we can consider

the correlation function of (5.4)-type:

F
(i)
N (z, z′|z1, · · · , zN)

=
∑

j1,···,jN
vj1 ⊗ · · · ⊗ vjNF

(i)
N (z, z′|z1, · · · , zN)j1,···,jN

F
(i)
N (z, z′|z1, · · · , zN)j1,···,jN

= i〈B|A(i)
NW(z, z′)φj1(z1 − z′) · · ·φjN (zN − z′)A(i)

SW(z, z′)|B〉i .

(5.5)

Here we assume that N ≡ 0 mod n for simplicity.

From the same discussion as in [18, 19], we obtain:

Proposition 5.1. The correlation function (5.5) satisfies the following relations:

1. R-matrix symmetry:

Pj j+1F
(i)
N (z, z′| · · · , zj+1, zj , · · ·) = R

Vzj
,Vzj+1

j j+1 F
(i)
N (z, z′| · · · , zj , zj+1, · · ·) (5.6)

2. Reflection property I:

KN(zN)F
(i)
N (z, z′|z1, · · · , zN−1, zN) = ν(i)(zN)F

(i)
N (z, z′|z1, · · · , zN−1,−zN) (5.7)

3. Reflection property II:

K̂1(z1)F
(i)
N (z, z′|z1, z2, · · · , zN) = ν(i)(z1)F

(i)
N (z, z′| − z1 − nw, z2, · · · , zN) (5.8)

where

K̂(z)vk =
∑
j

vjK
∗(−z − n

2w)kj .

Proof. The first equation (5.6) follows from the commutation relation (4.6), while the second
one (5.7) follows from (4.19). Finally, from the crossing relation (4.8) and (4.23)

K̂1(z1)F
(i)
N (z, z′|z1, z2, · · · , zN)

=
∑

j ′
1,j1,···,jN

vj1 ⊗ · · · ⊗ vjN

× i〈B|A(i+N)
NW (z, z′)φ∗

j ′
1
(z′ − z1 − n

2w) · · ·A(i)
SW(z, z′)|B〉iK∗

1 (−z1 − n
2w)

j ′
1
j1

= ν(i)(z1)
∑

j1,···,jN
vj1 ⊗ · · · ⊗ vjN

× i〈B|A(i+N)
NW (z, z′)φ∗

j1
(z′ + z1 + n

2w) · · ·A(i)
SW(z, z′)|B〉i

we obtain the last equation (5.8). �



8298 Y-H Quano

Owing to the equations (5.6)–(5.8) we obtain:

Theorem 5.2. The correlation function (5.5) satisfies the following difference equation:

TjF
(i)
N (z, z′|z1, · · · , zN) = R

Vzj −nw,Vzj−1

jj−1 · · ·RVzj −nw,Vz1

j1 K̂j (−zj )

×R
Vz1 ,V−zj

1j · · ·RVzj−1 ,V−zj

j−1j R
Vzj+1 ,V−zj

j+1j · · ·RVzN ,V−zj

Nj

×Kj(zj )R
Vzj

,VzN

jN · · ·RVzj
,Vzj+1

jj+1 F
(i)
N (z, z′|z1, · · · , zN) (5.9)

where

Tjf (z, z′|z1, · · · , zj , · · · , zN) = f (z, z′|z1, · · · , zj − nw, · · · , zN).
Using the crossing symmetries we have another expression of the correlation function on

the dislocated CTM lattice for general n � 2:

G
(i)
N (z, z′|z∗

1, · · · , z∗
N, zN, · · · , z1)

j ′
1,···,j ′

N ,jN ,···,j1

= i〈B|A(i)
NW(z, z′)φ∗j ′

1(z∗
1 − z′) · · ·φ∗j ′

N (z∗
N − z′)φjN (zN − z′) · · ·φj1(z1 − z′)

×A
(i)
SW(z, z′)|B〉i , (5.10)

where z∗
l = z′

l − n
2w for 1 � l � N . We thus introduce the V ∗⊗n ⊗ V ⊗n-valued correlation

function

G
(i)
N (z, z′|z∗

1, · · · , z∗
N, zN, · · · , z1) =

∑
j1 ,···,jN
j ′
1 ,···j ′

n

v∗
j ′

1
⊗ · · · ⊗ v∗

j ′
N

⊗ vjN ⊗ · · · ⊗ vj1

×G
(i)
N (z, z′|z∗

1, · · · , z∗
N, zN, · · · , z1)

j ′
1,···,j ′

N ,jN ,···,j1 . (5.11)

Let us describe the R-matrix symmetry corresponding to (5.6).

Proposition 5.3. Let

G
(σi)
N (z, z′|xσ(1), · · · , xσ(2N))

=
∑

j1 ,···,jN
j ′
1 ,···j ′

n

v∗
j ′

1
⊗ · · · ⊗ v∗

j ′
N

⊗ vjN ⊗ · · · ⊗ vj1G
(σi)
N (z, z′|xσ(1), · · · , xσ(2N))

kσ(1),···,kσ(2N)

G
(σ i)
N (z, z′|xσ(1), · · · , xσ(2N))

kσ(1),···,kσ(2N) = i〈B|A(i)
NW(z, z′)Aσ(1) · · ·Aσ(2N)A

(i)
SW(z, z′)|B〉i .

(5.12)

Here σ is the permutation of (1, · · · , 2N), and

xl =
{
z∗
l = z′

l − n
2w (1 � l � N)

z2N+1−l (N + 1 � l � 2N)

kl =
{
j ′
l (1 � l � N)

j2N+1−l (N + 1 � l � 2N)

and

Al =
{
φ∗kl (xl − z′) (1 � l � N)

φkl (xl − z′) (N + 1 � l � 2N).

Then the following R-matrix symmetry holds:

G
(σj i)

N (z, z′| · · · , xσ(j+1), xσ(j), · · ·) = R
V σ(j),V σ(j+1)

σ (j),σ (j+1) G
(σ i)
N (z, z′| · · · , xσ(j), xσ(j+1), · · ·) (5.13)

where

V l =
{
V ∗
xl

(1 � l � N)

Vxl (N + 1 � l � 2N)

and σj is the permutation of (1, · · · , 2N) obtained from σ by transposing σ(j) and σ(j + 1).
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The reflection properties can be similarly shown as before:

Proposition 5.4. The following relations hold:

K2N(z1)G
(π i)
N (z, z′| · · · , z1) = ν(i)(z1)G

(π i)
N (z, z′| · · · ,−z1) (5.14)

K̂2N(z1)G
(ρ i)

N (z, z′|z1, · · ·) = ν(i)(z1)T1G
(ρ i)

N (z, z′| − z1, · · ·) (5.15)

K̂∗
1 (z

∗
1)G

(ς i)

N (z, z′|z∗
1, · · ·) = ν(i)(−z∗

1 − n
2w)T1G

(ς i)

N (z, z′| − z∗
1, · · ·) (5.16)

K∗
1 (z

∗
1)G

(τ i)
N (z, z′| · · · , z∗

1) = ν(∗i)(−z∗
1 − n

2w)G
(τ i)
N (z, z′| · · · ,−z∗

1). (5.17)

Here,

K̂∗(z)v∗
k =

∑
j

v∗
jK(−z − n

2w)kj

and π , ρ, ς , τ ∈ S2N such that

π(2N) = 2N ρ(1) = 2N ς(1) = 1 τ(2N) = 1.

Proof. The relation (5.13) is evident from the commutation relations (4.6). The last two (5.16)
and (5.17) follow from (4.20), (4.8) and (4.22). �

From propositions 5.3 and 5.4, we have:

Theorem 5.5. Let V l
1 = V−xl , V

l
2 = Vxl−nw. Then the following difference equations hold:

TlG
(i)
N (z, z′|x1, · · · , x2N) = R

V l
2 ,V

l−1

l l−1 · · ·RV l
2 ,V

1

l 1 K̂∗
l (−xl)R

V 1,V l
1

1 l · · ·RV l−1,V l
1

l−1 l R
V l+1,V l

1
l+1 l · · ·RV 2N ,V l

1
2N l

×K∗
l (xl)R

V l,V 2N

l 2N · · ·RV l,V l+1

l l+1 G
(i)
N (x1, · · · , x2N) (5.18)

for 1 � l � N , and

TlG
(i)
N (z, z′|x1, · · · , x2N) = R

V l
2 ,V

l−1

l l−1 · · ·RV l
2 ,V

1

l 1 K̂l(−xl)R
V 1,V l

1
1 l · · ·RV l−1,V l

1
l−1 l R

V l+1,V l
1

l+1 l · · ·RV 2N ,V l
1

2N l

×Kl(xl)R
V l,V 2N

l 2N · · ·RV l,V l+1

l l+1 G
(i)
N (x1, · · · , x2N) (5.19)

for N + 1 � l � 2N .

Theorem 5.5 gives an elliptic generalization of the corresponding difference equations for
the boundary Uq(ŝln)-symmetric model [14].

5.3. Boundary spontaneous polarization

Applying a similar argument as in (5.9) to the simplest case N = 1, we obtain the following
difference equations:

T1G
(i)
1 (z, z′|z∗

1, z2) = K̂∗
1 (−z∗

1)R
Vz2 ,V

∗
−z∗1

21 K∗
1 (z

∗
1)R

V ∗
z∗1
,Vz2

12 G
(i)
1 (z, z′|z∗

1, z2)

T2G
(i)
1 (z, z′|z∗

1, z2) = R
Vz2−nw,V

∗
z∗1

21 K̂2(−z2)R
V ∗
z∗1
,V−z2

12 K2(z2)G
(i)
1 (z, z′|z∗

1, z2)

(5.20)

where z∗
1 = z1 − n

2w. It is difficult to get each element of G
(i)
1 (z, z′|z1, z2); however, it is

possible to obtain the expression for the following sums:

P (i)
m (z, z′|z1, z2) =

n−1∑
j=0

ωmjG
(i)
1 (z, z′|z1 − n

2w, z2)
jj . (5.21)
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Note that the boundary spontaneous polarization as the vacuum expectation value of the
operator g at the boundary is expressed in terms of (5.21) as follows:

〈g〉(i) = P
(i)
1 (z, z′ = 0|z1, z2)

P
(i)
0 (z, z′ = 0|z1, z2)

∣∣∣∣∣
z1=z2=z′

. (5.22)

Now we restrict ourselves to the free boundary condition r → 1 for simplicity. Since
lim
r→1

K(0) �= K0, the initial condition does not hold if we take K(z) = K0K(z). Thus we

should regard the K-matrix in this limit as K(z) = K(0)K(z). Under this identification the
K-matrix behaves as

K(z) −→ k(z)In

where k(z) is a scalar function of z.
Here we cite the following sum formula from [24]†

n−1∑
j=0

ωmj θ
(j)(z + w)

θ(j)(w)
= n

h((z − m)/n + w)
∏

l �=m h((−z + l)/n)

h(w)
∏

l �=0 h(l/n)
. (5.23)

Then we see that the dual K-matrix in the free boundary limit r → 1 behaves as

K∗(z − n
2w) −→ k(−z)f0(u

2qn)In,

where

fm(u) : =
n−1∑
j=0

ωmjR(z)
j0
0j

= 1

κ̄(u)

(ω−mq2u−2/n; t2)∞(t2ωmq−2u2/n; t2)∞
(ωmu2/n; t2)∞(t2ω−mu−2/n; t2)∞

. (5.24)

The difference equations (5.20) are therefore reduced to

T1G
(i)
1 (z, z′|z∗

1, z2)
jj = f0(u

2
1q

n)
∑
k,l

R12(−z1 − z2)
kj

jkR21(z2 − z1)
lk
klG

(i)
1 (z, z′|z∗

1, z2)
ll

T2G
(i)
1 (z, z′|z∗

1, z2)
jj = f0(u

2
2q

n)
∑
k,l

R12(z1 − z2)
kj

jkR21(−z1 − z2)
lk
klG

(i)
1 (z, z′|z∗

1, z2)
ll

(5.25)

where z∗
1 = z1 − n

2w, and we use (2.28) and (3.11). Substituting (5.25) into (5.21) we obtain

P (i)
m (z, z′|z1, z2) = C(i)

m A(u1)A(u2)Bm(u+)B−m(u−). (5.26)

HereC(i)
m is a constant, andA(u) andBm(u) are solutions to the following difference equations:

A(uqn)

A(u)
= f0(u

2qn)
Bm(uq

−n)

Bm(u)
= fm(u). (5.27)

By solving these difference equations we obtain

A(u) = ψ(u2)
(q2u4/n; t2, q4)∞(q4u−4/n; t2, q4)∞
(t2u4/n; t2, q4)∞(t2q2u−4/n; t2, q4)∞

(5.28)

where

ψ(u) := g0(uq
−n/2)g0(u

−1qn/2)

g0(u) := (q2+3nu−2; t2, q2n, q4n)∞(t2q−2+3nu−2; t2, q2n, q4n)∞
(q3nu2; t2, q2n, q4n)∞(t2q3nu2; t2, q2n, q4n)∞

† Note that there are typographical errors in the formula in [24].
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and

Bm(u) = ϕ(u)
(t2ωmu2/n; t2)∞(t2ω−mu−2/n; t2)∞
(q2ωmu2/n; q2)∞(q2ω−mu−2/n; q2)∞

(5.29)

where

ϕ(u) := g(uqn/2)g(u−1qn/2)

g(u) := (q3nu−2; t2, q2n, q2n)∞(t2q3nu−2; t2, q2n, q2n)∞
(q2+nu2; t2, q2n, q2n)∞(t2q−2+nu2; t2, q2n, q2n)∞

.

Note that Bm(u) is essentially the same as G(m)(u) in [24], which corresponds to the quantity
(5.21) in the bulk theory.

From (5.26) we have

P
(i)
1 (z, z′ = 0|z1, z2)

P
(i)
0 (z, z′ = 0|z1, z2)

= C
(i)
1

C
(i)
0

B1(u+)B−1(u−)
B0(u+)B0(u−)

. (5.30)

Taking the low-temperature limit t, q → 0, we find that the ratio C(i)/C
(i)
0 should be equal

to ωi . We therefore obtain the boundary spontaneous polarization from (5.30) and (5.29) by
putting u+ = u− = 1:

〈g〉(i) = ωi (q
2; q2)4

∞
(t2; t2)4∞

(t2ω; t2)2
∞(t2ω−1; t2)2

∞
(q2ω; q2)2∞(q2ω−1; q2)2∞

. (5.31)

When n = 2 this expression coincides with the previous result obtained in [10]. We also
emphasize that the boundary spontaneous polarization for the boundary Belavin model is
exactly the square of that for the bulk Belavin model obtained in [24], up to a phase factor.

6. Summary and discussion

In this paper we have obtained two non-diagonal solutions of the reflection equation associated
with Belavin’s Zn-symmetric elliptic model. Unfortunately, our elliptic K-matrix is not
connected with the diagonal boundary Boltzmann weights for the A

(1)
n−1-face model [25] but

with the non-diagonal ones. It is thus an open problem to obtain the K-matrix corresponding
to the boundary Boltzmann weights given in [25].

On the basis of the boundary CTM bootstrap we have derived a set of difference equations
for correlation functions of the boundary Belavin model. By solving the simplest difference
equations, we have obtained the boundary spontaneous polarization of the boundary Belavin
model. Our result is consistent with the one given in [10] when n = 2. The boundary
spontaneous polarization is equal to the square of the bulk spontaneous polarization [24] up to
a phase factor. The same phenomena were observed in [9, 10].

In this paper we have shown that correlation functions of the boundary model satisfy
the R-matrix symmetry and the reflection properties, which are the boundary analogue of
Smirnov’s first two axioms [20]. It may be interesting to construct integral formulae for
correlation functions such that the integrand possesses the determinant structure as in Smirnov’s
integral [20].

In [15] integral formulae are presented for correlation functions of the boundary XYZ model
by using bosonization of vertex operators [37]. In order to obtain the higher-n generalization
of [15], the construction of a free field realization of the boundary Belavin model is required.
That is a very difficult but important task.
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